
1

Let us imagine that massive data is now prepared from the acquisition and
annotation pipeline. Our goal is to utilize such data for training.

Common tasks in computer vision for robotics include object classification, object
and scene segmentation, and so on.

As mentioned in the reconstruction, there could have multiple approaches for
representing 3D data. Here we choose to represent the data with 3D point cloud, as
this is a true 3D representation and it is view independent. Deep learning with point
cloud is also an active research topic. Therefore, we would like to provide a more
detailed explanation in this part to motivate more future works in this topic.

2

Deep learning with 3D point cloud is a challenging problem. Particularly, if we map
each component in existing 2D convolutional neural network to 3D point cloud, there
will have the following issues.

First, point cloud is mathematically a set. {x1, x2, x3} and {x1, x3, x2} are different
vectors but basically represent the same point cloud. Somehow the network has to
take this into consideration. Possible solutions are:
- Sort the point cloud
- Map the point cloud to something that is order invariance
- Use recurrent neural network which can deal with a data sequence. If the network

is trained enough with different sequence, it will become robust to different
ordering.

In this talk, we will highlight methods that use each of these possible solutions.

Second, unlike an image that can be represented as a 2D grid where convolution is
straightforward, points can scatter arbitrarily in the 3D space, and defining a
convolution (a weighted sum in principle) requires nearest neighbour queries.

Third, max pooling is not straightforward to define with point clouds. Designing

3

networks for convolution and deconvolution is therefore challenging.

There has been on-going research works that tackle such challenges.

3

Let us start with a simple approach by Hua et al. in the coming CVPR 2018.

¢ƘŜ ƛŘŜŀ ƛǎ ǾŜǊȅ ǎƛƳǇƭŜΦ [ŜǘΩǎ ŘƛǊŜŎǘƭȅ ŘŜŦƛƴŜ Ƙƻǿ ǘƻ ǇŜǊŦƻǊƳ ŎƻƴǾƻƭǳǘƛƻƴ ǿƛǘƘ о5
point cloud. They named it pointwise convolution.

The tricky part in this work is how to define the convolution, its derivative, and
integrate nearest neighbours in each convolution so that it can be robust for training.

4

The key component is a special convolution which is called pointwise convolution. It
is named to mean that we apply the convolution at every point in the point cloud,
and there is no pooling, up/down-sampling done in the entire pipeline.

At each point, e.g., the red one, we center a grid, in this case, 3x3, and determine
which points fall into the grid and into which cells.
All points in the grid takes the same weight in the convolution.

To handle different size of the receptive field, we can use different size for this 3x3
grid in different layers.

To handle point orders, we sort all points in XYZ coordinates.

A tricky issue is how to implement nearest neighbour search efficiently. Here, we
make use of a uniform grid as an acceleration data structure, instead of using
hierarchical data structure such as kd-tree or octree as we found that, usually with
2048 or 4096 points, the performance of the uniform grid is better on modern CPUs.
Also, such implementations are also straightforward on GPUs and CUDA.

5

We implement this operator in Tensorflow.

5

With the availability of the new convolution, we can see that it is now possible design
convolutional neural network for point cloud. And here, we use a very simple design,
with just a four layers of convolution, followed by a concatenation before branching
for semantic segmentation or classification, respectively.

Note that in this design, the network looks almost similar to traditional neural
networks for 2D images.

6

Here is the training and testing convergence plot. The red curve denotes training, and
the blue curve denotes testing.

We see that the pointwise convolution works and the learning converges.

7

[ŜǘΩǎ ƭƻƻƪ ŀǘ ǘƘŜ ǊŜǎǳƭǘǎ ƻŦ ǘƘŜ ƻōƧŜŎǘ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴ ǘŀǎƪ ƛƴ ƳƻǊŜ ŘŜǘŀƛƭǎΦ IŜǊŜ ǿŜ ǎƘƻǿ
an experiment with different network design. The base example without any fancy
addons has about 78.6% of accuracy, which is a bit low compared with the state-of-
the-arts.

When we add feature concatenation from all layers, a-trous (dilated) convolution to
increase the receptive field, SELU to stabilize the training, and dropout to avoid
overfitting, we end up getting 86.1%, which is pretty close to the state-of-the-art,
given the extremely simple network design and the convolution operator.

8

Here is the result of semantic segmentation from our neural network.
The training and testing are both done on the SceneNN dataset in this example, to
demonstrate the output of our 3D acquisition and annotation earlier.

We see that the results are quite accurate for common classes such as table, chair,
floor, and wall. There still has some noise and ambiguity, which would be an
interesting future work. For example, we can filter out some noise if we have a
constraint to enforce the coherency on labels in a local region.

(We will show how to do this with a conditional random field at the end of this talk,
where we discuss an application for real-time semantic segmentation.)

Now, after discussing a very simple approach in 3D deep learning with point cloud, let
us look at a more complex approach that is one of the state-of-the-arts. This is one of
the pioneering algorithm for deep learning on point cloud.

Let us look at the blue part for object classification.

The idea here is to employ a symmetric function that can turn the input point set into
an intermediate representation with order invariance. A symmetric function will
always produce the same result despite that the input parameters can be in any
order. In PointNet, they implement this using a maxpool operation, resulting in a
global feature vector as shown in the diagram.

There are two small blocks that applies a T-Net. Basically, the first one is for aligning
the input point cloud as it can have arbitrary orientations. This is mainly for semantic
segmentation use.

The second T-Net block is with the same idea, but this time for aligning in the feature
space.

Finally, the yellow block denotes how to perform semantic segmentation with
PointNet. Each point has its feature vector concatenated with the global feature

vector, before being passed to some multi-layer perceptrons to produce final per-
point label prediction.

With this design, PointNet achieves state-of-the-art results in object classification and
semantic segmentation.

10

PointCNN is a recent work (on arXiv) that has similar ideas to PointNet in handling
point order. Instead of using a symmetric function to learn order invariance, they
propose to use an MLP to estimate the transformation to canonicalize the order,
which they term X-transformation. After the transformation, the point cloud is
downsampled (randomly or using farthest point sampling), and the convolution
continues.

This process is illustrated here.
The top row represents an ordinary convolution in 2D, applied on a regular grid.
Gradually, a 4x4 grid turns into a 3x3 grid, and then a 2x2 grid.
At the same time, the number of channels at each point is increased to store richer
information contributed from the neighbors during convolution. This is represented in
bigger points.

The same idea applies to the convolution designed by PointCNN. With a point set,
after each convolution with the operator X-conv, a subset of points are retained by
downsampling, and contained richer information (emphasized by bigger points).

So here, what we need to optimize during training is this X-transformation layer.

