
Slide 1

Designing a Robust Interactive Tool
for 3D Scene Annotation

Creating Annotated Scene Meshes for Training and Testing Robot Systems

Hi everyone, thank you for coming this presentation!

Slide 2

Motivation
• High-quality 3D scenes using RGB-D cameras are widely available.

2

Slide 3

What to do with reconstructed data?

3

From the perspective of a computer or a robot, 3D reconstructed data is just a bunch of 3D
vectors in XYZ coordinates.

This is very different from human perspective. For example, we understand and reason
about the 3D content. We know what and where a particular object is.

If you recall the topic of this talk, they are acquisition, understanding, and remodelling.

Slide 4

cloth
es

monit
or

curtain

cabine
t

bin

desk

poster

shelves

chair

floor

wall

lamp

4

Scene understanding is the goal we pursue after 3D reconstruction.

Slide 5

Motivation
• Semantic segmentation, object detection, pose estimation

are still challenging to solve for 3D scenes.

5

Slide 6

Motivation
• Deep learning needs massive ground truth data for training.
How to annotate 3D scenes effectively?

6

Slide 7

Problem statement
An interactive tool for scene segmentation and annotation

• Annotate a 3D scene and many RGB-D images in a single system.

• No world assumption. Capable to annotate any scenes.

• Dense annotation: per vertex and per pixel label.

• Fine-grained annotation: object poses, bounding boxes.

7

Interaction is required because no automatic segmentation is perfect.

We would like to be able to annotate on both 3D and 2D domain.

We make no assumption about the scene to annotate, e.g., Manhattan world. Our goal is to
support arbitrary scenes from multi-sources, e.g., scenes from RGB-D reconstruction or
multi-view geometry.

Slide 8

Related works

SemanticPaint, Valentin et al.,
ACM Transactions on Graphics 2015

SemanticFusion, McCormac et al., ICRA 2017

SmartAnnotator, Wong et al., Eurographics 2015

8

There are a few related works in this area.
SemanticPaint by Valentin et al. applied online learning and conditional random field to
propagate labels from user interaction automatically.
Their system couples 3D reconstruction and segmentation together in real-time.

SemanticFusion published in ICRA recently also addressed scene segmentation and
annotation, but their method is fully automatic, which is more useful for robot navigation
and exploration than making data for deep learning.

SmartAnnotator by Wong et al. in Eurographics 2015 performs segmentation and box
annotation, and their system only worked with images.

Slide 9

The Pipeline3D reconstruction

Automatic segmentation

User interaction

Fine-grained annotation
• 3D and 2D refinement
• Object annotation
• Object search

Geometry Color

RGBD

Graphcut MRF

3D segmentation

2D segmentation

9

Our proposed system has three main components: 3D reconstruction, automatic
segmentation, user interaction.

So here we will focus on automatic segmentation, and user interaction. We will also present
advanced features such as 2D refinement and object search to support user to annotate
more efficiently.

Slide 10

3D reconstruction

10

We then reconstruct the scene from the input video. We represent the scene as a triangular
mesh.

Slide 11

Output: 3D segmentation and annotation

Wall

Door

Bed

Floor
Trashbin

Monitor
Shelf

11

Our system outputs a 3D mesh with the segmentation and annotation results.

Slide 12

Output: 2D segmentation and annotation

12

Similarly, our system also outputs a video by reprojecting the annotation from 3D to 2D.

Slide 13

3D segmentation

13

Slide 14

Semi-automatic Scene Annotation

Supervertices Regions

A Robust 3D-2D Interactive Tool for Scene Segmentation
and Annotation
TVCG 2017
Duc Thanh Nguyen, Binh-Son Hua, Lap-Fai Yu, Sai-Kit Yeung

Merge

Extract

http://webgl.scenenn.net

Input

14

To support scene understanding and evaluate its performance, we need a set of ground
truth data, which we obtain via a semi-automatic scene annotation tool.

Our input mesh is obtained from marching cubes after KinectFusion and global registration.
Typical number of input vertices for each scene ranges between 1-2 millions. Direct
manipulation millions of vertices is very challenging for a user interactive application. User
usually cannot manage such a great deal of vertices.

For object segmentation, we assume that we only need to manipulate segment size at least
close to some common small objects in indoor scenes such as cup, mouse, mobile phones,
shoes, etc. With this assumption, we design a bottom-up segmentation system. We first
apply automatic segmentation algorithms to generate supervertices and regions. Users can
then manipulate supervertices and regions with a set of simple operations to segment
objects.

Slide 15

Bottom-up segmentation

Supervertices Regions Objects

Automatic Interactive

15

Our input mesh is obtained from marching cubes after KinectFusion and global registration.
Typical number of input vertices for each scene ranges between 1-2 millions. Direct
manipulation millions of vertices is very challenging for a user interactive application. User
usually cannot manage such a great deal of vertices.

For object segmentation, we assume that we only need to manipulate segment size at least
close to some common small objects in indoor scenes such as cup, mouse, mobile phones,
shoes, etc. With this assumption, we design a bottom-up segmentation system. We first
apply automatic segmentation algorithms to generate supervertices and regions. Users can
then manipulate supervertices and regions with a set of simple operations to segment
objects.

Slide 16

Graph-based segmentation
• Geometric segmentation on

mesh vertices.

• Supervertex is the smallest
geometric unit to manipulate.

• Each scene has ~5000
supervertices.

P. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” IJCV 2004.

Supervertices

16

The first level in our bottom-up segmentation is designed for fine-grained manipulation.

We run a graph-based segmentation to group mesh vertices into small clusters, or
supervertices. This is the minimal segmentation unit that a user can manipulate. Parameters
of graph-based segmentation can be adjusted to change the size of a supervertex, usually
based on the size of some common small objects in the scene.

In our experiment, we reduce millions of vertices to thousands of supervertices. In the
SceneNN dataset, on average we have 5000 supervertices per scene.

Slide 17

Markov random field
• Geometric + color

segmentation on mesh vertices.

• Attempt to group similar
supervertices together.

• Each scene has ~500 regions.

Regions

17

Next, we build the 2nd level of bottom-up segmentation by grouping the supervertices
together using geometry and color information. We formulate this problem using a Markov
random field. The output of the optimization produces a few hundred regions, which are
more manageable for the user to refine.

Typically, the number of regions is a order of magnitude less than the number of
supervertices. In SceneNN we usually have a few hundreds of regions.

The results of automatic segmentation are then presented to user for refinement. However,
automatic segmentation is never perfect, and we would like to assist users as much as we
can to refine the imperfect segmentation.

(In fact, a graphcut algorithm could be used here, but using MRF provides the capability for
more sophisticated cost terms such as object probability, co-occurrence probability when
grouping the supervertices. This could be a future research direction.)

Slide 18

Imperfect segmentation

Under-segmentation

Over-grouping

Under-grouping

18

From the perspective of bottom-up segmentation, there are two types of imperfections:
over grouping, and under grouping.

In over-grouping, the segments are too small and only form partial objects. By contrast, in
under-grouping, the segments are too large and spread over many objects.

We address this problem by designing a set of simple operations for users to refine the
segmentation.

Slide 19

Merge

Before After
19

Merge is the most common operation in our system and is used to solve over-segmentation.
It merges several small segments to form a bigger segment which represents a semantic
object in the scene.

Slide 20

Extract

AfterBefore

Supervertices

Supervertices

Group graphcut results 20

Extract could be seen as merge applied on supervertices for retrieving small segments from
existing large segments.

In this example, the first and third column show the current segmentation result. The middle
column shows supervertices.
When user draws a stroke, supervertices are merged, and then the new regions are written
to the current segmentation.

In our system, graphcut result is displayed on the fly when user press Alt key. Supervertices
are precomputed. Therefore, merge and extract could be used without any significant
overhead.

Slide 21

Split

Before After
21

Split operation is designed to when the MRF-based segmentation need to be customized on
specific cases. It performs the MRF-based segmentation on a single large segment, to break
it into several smaller segments.

We also support undo in the system.

With this basic set of operations, user can now segment objects in a scene.

Slide 22

User interaction

5x• Simple operations: merge,
extract, split, undo.

• Cache graphcut results for
fast switch between current
segmentation and graphcut.

• ~15 – 30 mins for a typical
16sqm room.

22

Here is an example that demonstrates annotation in progress.

Slide 23

Advanced features

23

Beside a set of core user operations, we also investigate and design advanced features to
assist users to obtain more accurate segmentation in a shorter time.
Here we present two problems and their solutions: refining 2D segmentations, and handling
repetitive objects in a scene with template-based object search.

Slide 24

2D segmentation

2D projection3D segmentation 24

In order to obtain segmentation for 2D frames, we reproject the 3D segmentation results
onto the 2D frames using the camera poses obtained from 3D reconstruction.

Slide 25

Boundary misalignment

25

While the surfaces are aligned on the 2D frames, the boundaries can be misaligned.

This is due to several reasons: inaccurate camera pose estimation or original color/depth
images in RGB-D video has some misalignments.

Slide 26

Boundary snapping

boundary
edge

correspondence

26

To resolve this problem, we propose a general method to snap the boundaries of the 2D
segments to the edges in the color images. This is formulated as a contour matching and
dynamic programming.

Here the red contours are from segmentation image. The black edges are from Canny
detector applied on color images.
Our task is to find a optimal set of correspondences to snap the red contours to the black
edges.

Slide 27

Boundary snapping

• Find correspondences
such that

Optimization details in the paper

Continuity prior

Smoothness prior

Difference of histogram
of orientations

27

h is the histogram of orientations, or basically the descriptor at each point.
u is a point in the pointset.
f is the correspondence function that maps a point in the segmentation point set to the
color point set.
X^2 is the distance function between two descriptors (see the paper, equation 5).

Find f such that the cost function is minimize:

Continuity prior: the mapped points should be near each other.
Smoothness prior: the points after mapping should have low gradients.

Slide 28

Snapping result

28

Slide 29

Object search

29

Our tool also allows the user to quickly annotate repetitive objects. Here is the process.

Slide 30

Template-based object search
• 3D shape context descriptor
• Sliding window search
• For each candidate region:

Apply a greedy grow-shrink procedure to find the best
combination of labels

30

The user first chooses an example object. Our tool will then automatically search for similar
objects in the scene.

We build template-based object detector using sliding window search. For each region, we
generate the candidate object by apply a grow-shrink procedure. Grow means the current
region will accumulate its neighbour regions, and shrink means it will discard a region from
its current region set.

Each time grow or shrink is applied, we compute the 3D shape context descriptor of the
candidate, and attempt to match its descriptor with that of the template. To improve
matching accuracy, we also estimate a rigid transformation between the candidate and the
template.

Matched objects in the scene are automatically highlighted for quick annotation.

Here is an example.

Slide 31

Template-based object search

31

In this example, the chair enclosed by the red box is selected as the example object. It then
performs the search in a sliding window fashion, with a grow-shrink procedure to find good
matches.

Slide 32

Guided merge

Apply grow-shrink after user interaction 32

To handle objects that cannot be found by sliding-window object search, we introduce
guided merge, a semi-automatic way to merge regions of an object. User first selects a
template, and then click on a region of the target object. The grow-shrink procedure in
object search will automatically find a set of regions near the click location that appear the
most similar to the template. In this example, the chair on the left is used as the template,
and a dark pink region of the chair on the right is clicked. The final merge is displayed in the
green box.

Slide 33

Guided merge

click

33

Slide 34

Guided merge

34

Slide 35

Experiments

35

Slide 36

SceneNN dataset annotation

Reconstruction Automatic
segmentation

Refined
segmentation 36

First we demonstrate the automatic segmentation and refined segmentation of a few
scenes.

From a bedroom…

Slide 37

SceneNN dataset annotation

Reconstruction Automatic
segmentation

Refined
segmentation 37

Slide 38

SceneNN dataset annotation

Reconstruction Automatic
segmentation

Refined
segmentation 38

To a meeting room…

Note that with the same graphcut parameters, if we have more vertices, basically we will
have more supervertices.

Slide 39

39

Here are more examples.

Slide 40

40

We also show the annotated bounding boxes with labels.

Slide 41

41

Slide 42

42

Slide 43

43

Slide 44

44

Slide 45

Outdoor Scene Annotation

45

Our tool is very general, and it can handle both indoor and outdoor scenes. Here is an
example.

We are working towards improving the automatic segmentation with data collected from
the tool itself. Gradually with more training data, the automatic segmentation will get better
and better.

Slide 46

Automatic segmentation statistics

46

And here is the quantitative experiment. We first show the automatic segmentation.

OCE measures the consistency of vertex labels w.r.t. ground truth. The lower OCE the better.

Here we use our interaction to first make the ground truth, and then use it to evaluate the
automatic segmentation. As can be seen, MRF segmentation has better consistency.

The number of vertices is also reduced to thousands, and the number of regions to
hundreds.

Slide 47

User interaction statistics

47

Here is the statistics of user interaction phase. On average we annotate about 10 to 20
objects per scene in up to 30 minutes.

We target not only objects, but also clean separation of the objects.

We avoid label spilling (inaccurate label spread from one object to another) as much as
possible.

Slide 48

Comparison to SemanticPaint [Valentin et al., 2015]

48

We also provide a qualitative comparison to the SemanticPaint system. Note that here we
only compare system to system. We label the objects using categories defined in NYU
dataset. There are a total of 37 categories.

As can be seen, our interactive system only results in low-frequency noise as we work on
supervertices.

By contrast, SemanticPaint’s conditional random field is applied to propagate label for each
vertex, resulting in noisier labelling even on a flat surface.

Slide 49

Object search evaluation
• 45 objects in two categories, chair and table.
• Each object is used as a template.
• 69% precision and 70% recall.
• Template represented by 150 points.
• Search completes within 15 seconds.

49

We performed an evaluation of the object search performance. Since our object search is
designed to handle repetitive objects, we only select scenes with such property in the
dataset for evaluation.

With two common categories like chair and table, we obtain ~70% precision and recall,
which proved that this technique could be useful when a lot of repetitive objects are in the
scene, e.g., a class room scene.

Here we also tune the performance so that the object search can complete at interactive
rate. In our experiment, it completes from 10 to 15 seconds.

Slide 50

Boundary snapping evaluation

50

We also provide a quantitative measure of our boundary snapping technique. Again, OCE
measure shows that the consistency is improved after boundary snapping is applied. This
experiment also shows the effectiveness of the proposed priors.

Slide 51

User study
• To measure how

merge and extract are
used in practice.

• Task A:
Simple scene,
2 minutes.

• Merge is dominant.

51

Finally, we have conducted a user study on the effectiveness of our
interactive operations (merge, split, extract, and undo).

We recruit 15 human subjects. Each participant is asked to perform two tasks (A and B)
designed for simple and complex
scenes. In task A, users were asked to segment a scene with
only a few chairs and a table in two minutes.

In task B, users
were required to segment a complex bedroom scene containing
a significant amount of furniture and many small objects in
ten minutes.

All operations users performed were logged.

As a bottom-up segmentation, it is not surprising to see that merge operation is dominant.
In a simple scene as in Task A, there is little over-grouping. Therefore, extract and split are
rarely used. There are some undos as first-time users are not familiar with the tool.

Slide 52

User study
• Task B:

Complex scene,
10 minutes.

• More extracts used
in complex scenes.

52

In a more complex scene, we can see that extract becomes more substantial as over-
grouping now appears more due to more small objects appear.

In fact, we also learn that, the definition of objects could be quite different from the
perspective of each human subject.
For example, for a table, some users favour segmenting the table top of an object, while
others group the table top and table legs together.

For both tasks, our subjects are able to segment the objects using the proposed operations.

Slide 53

WebGL annotation tool

• Reimplementation of
our original C++
annotation tool.

• Graphcut, MRF with
merge and extract.

• Open source.

http://webgl.scenenn.net

53

At start, we implemented our tool in C++ and used it to annotate more than 100 scenes.

To support more scalability, we now have the tool reimplemented in WebGL. Basic features
such as merge, extract, undo, graphcut, MRF are supported.
You can now navigate to www.scenenn.net/webgl to try.
You can also inspect the source code and modify it for your own use.

We will open a new GitHub repository to officially host the WebGL source code soon.

Slide 54

WebGL annotation tool http://webgl.scenenn.net

54

At start, we implemented our tool in C++ and used it to annotate more than 100 scenes.

As a part to test scalability, we now have the tool reimplemented in WebGL. Basic features
such as merge, extract, undo, graphcut, MRF are supported.
You can now navigate to http://webgl.scenenn.net to try.
You can also inspect the source code and modify it for your own use.

Slide 55

Future work
• Less time, more quality.

Initial segmentation powered by a deep network.

• Better user experience.
Online learning of user operations to reduce undo.

• Annotate more scenes for 3D deep learning.

55

There are many research directions from the current work.

First, we can strive for better speed and quality. With the recent advance of deep learning,
we have thought of integrating neural networks to improve the quality of automatic
segmentation. This is a work in progress.

We also would like to improve the user experience. For example, after some merge and
extract, the system could be able to learn the pattern of this user, and thus suggest object
segmentations according to previous user inputs. This form of online learning would help to
adapt the tool better because as we said, the definition of objects by each user could be
very different.

Finally, we would like to scale the annotation to more and more scenes for deep learning
use.

