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Abstract

Several RGB-D datasets have been publicized over the
past few years for facilitating research in computer vi-
sion and robotics. However, the lack of comprehensive
and �ne-grained annotation in these RGB-D datasets has
posed challenges to their widespread usage. In this paper,
we introduce SceneNN, an RGB-D scene dataset consisting
of 100 scenes. All scenes are reconstructed into triangle
meshes and have per-vertex and per-pixel annotation. We
further enriched the dataset with �ne-grained information
such as axis-aligned bounding boxes, oriented bounding
boxes, and object poses. We used the dataset as a bench-
mark to evaluate the state-of-the-art methods on relevant re-
search problems such as intrinsic decomposition and shape
completion. Our dataset and annotation tools are available
at http://www.scenenn.net .

1. Introduction

Literature has shown that daunting challenges in com-
puter vision, e.g., intrinsic decomposition, edge detec-
tion, object detection and recognition, to name a few, can
be solved effectively by convolutional deep neural net-
works [18, 47, 37, 11]. However, in order to train deep
networks, a huge amount of data is required. In 2D, build-
ing datasets of millions of images is no longer a prob-
lem, thanks to the development of social networks and
photo-sharing sites. Recent progress in consumer-grade
depth cameras has demonstrated the potential of creating
datasets containing millions of RGB-D images,e.g., the
NYU dataset [27] for scene segmentation and the SUN-
RGBD dataset [28] for scene understanding.

While photographs and RGB-D images can be captured
easily, reconstructing a complete scene in 3D is much more
challenging. Recent advances in 3D reconstruction tech-
niques have facilitated this task signi�cantly, but this task is

still far from trivial considering that very often at least tens
of range images must be aligned and stitched together to
create a high-quality 3D scene. In addition, documentation
on the entire pipeline for scene reconstruction and annota-
tion are rather limited. When releasing a new scene dataset,
it is particularly important to clearly document the process
and techniques adopted for creating the dataset to sustain its
continuous growth.

Our goal is to create a dataset of real-world 3D scenes
with annotations. Figure1 shows a few example scenes in
our dataset. Figure2 shows an overview of our processing
pipeline. Our major contributions are:

� We reconstructed the triangle meshes of 100 indoor
scenes, including of�ces, bedrooms, living rooms,
kitchens and scenes with repetitive objects. We release
the scene dataset together with the RGB-D videos from
which the scenes were reconstructed.

� We annotated all objects in the scenes. The segmen-
tation and annotations were done per vertex and per
pixel in both 3D and 2D. We also enriched the annota-
tions with �ne-grained information,e.g., axis-aligned
bounding boxes, oriented bounding boxes, and object
poses.

� We demonstrated the use of our scenes for several
applications, including benchmarking state-of-the-art
shape completion methods, relighting the scenes us-
ing re�ectance obtained from intrinsic decomposition,
synthesizing novel views that are not captured in the
original RGB-D videos, and synthesizing CAD scenes
using statistics extracted from our dataset.

2. Related Work

In this section, we mainly review the relevant datasets.
Speci�c techniques applied in the reconstruction pipeline
are discussed in the subsequent sections. Our dataset is
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Figure 1. Example scenes of our dataset. The complexity of indoor scenes in the real world is depicted by the amount of objects and clutter.
Our scenes come with both mesh and color texture data, as well as dense annotations in both 2D and 3D.
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Figure 2. Overview of the processing pipeline and features of our dataset.

probably most similar to the SUN3D dataset created by
Xiao et al. [36]. Their dataset contains over 250 scenes and
is one of the biggest RGB-D datasets for 3D reconstruction
to date. However, only a few scenes are fully annotated.
In addition, their camera poses are not accurate, result-
ing in several misaligned surfaces (e.g., providencestation,
mit w85k2, mit w85 4). As their scenes are represented us-
ing point cloud, visibility check during rendering can be
inaccurate. The annotations are done on color images via
a web-based annotation tool similar to the LabelMe sys-
tem [24]. The annotation results are then propagated to 3D
scenes. In contrast, our scenes are reconstructed and repre-
sented astriangle mesh, and annotations are done ef�ciently
in 3D. Triangle mesh allows accurate visibility check, and
supports high-quality novel view rendering and relighting.
We include relightable scenes in our dataset which, to the
best of our knowledge, is the �rst of such kind available in
the community.

Recently, Song et al. [28] introduced an RGB-D dataset
for evaluating several scene understanding algorithms. This
dataset has approximately ten thousand frames and is
mainly designed for evaluating object detection and recog-
nition algorithms. Our dataset is of a larger scale and allows
exploration of other applications such as intrinsic decompo-
sition and novel view synthesis.

Handa et al. [13] created a CAD model dataset for scene

understanding. While it can be extended to include an in�-
nite number of objects, how well the CAD models and their
textures resemble real-world scenes is subject to the skills of
the human modellers or the performance of scene synthesis
algorithms being applied. The dataset can mainly be ap-
plied for depth-based scene understanding. In addition, the
complexity of real-world scenes, for example, object clut-
tering, is non-trivial to model. The Clutterpalette [41] could
be used to add clutter with user interaction, but material and
re�ectance could still be dif�cult to model, especially for
rough and textured surfaces. In contrast, our dataset is cre-
ated from real-world data and each scene has both geometry
and texture information, which can support different appli-
cations as we will demonstrate.

Table 1 summarizes the datasets we discuss and high-
lights their differences. We compare existing datasets based
on the total number of frames and scenes, annotation, deliv-
ered scene format, existence of camera pose, and the des-
ignated applications of the datasets. Previous datasets only
provide RGB-D images or point cloud of their scenes. Our
dataset provides reconstructed triangle meshes of the scenes
in addition to RGB-D images, to facilitate a wider range of
applications,e.g., shape completion and intrinsic decompo-
sition in 3D. For a more comprehensive survey of publicly
available datasets for other applications, we refer the read-
ers to the excellent summary by Firman [9].



Dataset Quantity Annotation Format Pose Applications

NYU v2 [27] 1449 frames All Image N U O
SUN RGB-D [28] 10K frames All Image N U O
RGB-D v2 [17] 17 scenes All Cloud Y R O
TUM [29] 47 scenes N.A. Image Y R
SUN3D[36] 254 scenes 8 scenes Cloud Y R L
Ours 100 scenes All Mesh Y R L I S

Table 1. Comparison with existing datasets. Our dataset has more
than 100 scenes densely annotated in 3D and 2D. The number
of frames per scene is between 2,000 and 10,000 frames. Nota-
tion for applications: R (3D reconstruction), O (object detection),
U (scene understanding), L (scene labeling), I (intrinsic decompo-
sition), S (shape completion).

3. Reconstruction

3.1. Data Capturing

We captured the RGB-D videos of different scenes using
a consumer-grade depth camera. The scenes were captured
steadily, while the depth and color images were displayed in
real time. Due to inaccuracies in depth values at far ranges,
pixels of unreliable depth values were highlighted to inform
the operator to seek more reliable depth sources. In our
experiments, we set a threshold of2:5 meters to ensure that
the depth values are reliable enough for reconstruction.

Our scenes are from a variety of categories, including
bedrooms, living rooms, kitchens and of�ces. The number
of objects per scene ranges from7 to 63. The average �oor
size is22:6 square meters. We de�ne an additional measure
to estimate the area that the operator stayed when capturing
a scene. We call this measureoperator coverage. This mea-
sure is estimated by projecting the camera positions gone
through when capturing a scene to the �oor plane of that
scene, and then computing the area of the convex hull of
all projected camera positions. Using a convex hull to de-
�ne this measure is appropriate since most of the scenes we
captured is box-shaped. We found that the operator cover-
age is about65%of the �oor area in average. This is gen-
erally consistent with the setup where the operator needs to
approach the surfaces to capture short-range depth values.

The average camera velocity is0:1 meter per second,
which is slow enough for camera tracking and for produc-
ing sharp color frames. The average camera angular veloc-
ity is 30 degrees per second which shows that the camera
remained stable throughout the capturing process.

For convenience, we assign a unique ID to each scene.
Each ID is represented by three digits,e.g., 311, 322, and is
used in our experiments to refer to the corresponding scene.

3.2. Sensor Comparison

We used an Asus Xtion PRO and a second generation
Microsoft Kinect (Kinect v2) for data capturing. Data from
both sensors are processed using a single reconstruction and

Asus Xtion PRO Kinect v2
Figure 3. Reconstruction of a room corner captured by an Asus
Xtion Pro (structured light sensor) and a Kinect v2 (time-of-�ight
sensor), respectively. The depth images captured by the Kinect
v2 have a lower pixel resolution yet the scene reconstructed from
them contains more surface details. However, the Kinect v2 fails
to capture depth values accurately near object boundaries, and the
reconstructed mesh is noisier.

annotation pipeline. The Asus Xtion PRO is comparable to
a �rst generation Microsoft Kinect (Kinect v1) but is more
lightweight and does not require an external power supply
to function. For the Asus Xtion PRO, both color and depth
streams are captured with a640� 480 resolution. For the
Kinect v2, the color stream is captured with a1920� 1080
resolution and the depth stream is captured with a512� 424
resolution. In addition, the aligned color images to depth
camera space and the aligned depth images to color camera
space are also stored. We modi�ed the Kinect v2 to function
on an external battery to enhance mobility during capturing.

Both the Asus Xtion PRO (a structured light sensor) and
the Kinect v2 (a time-of-�ight sensor) produce incomplete
depth images. The Asus Xtion PRO suffers from data loss,
i.e., depth measurements along object boundaries are miss-
ing. In contrast, the Kinect v2 suffers from data drift,i.e.,
depth measurements along object boundaries are not reli-
able. Figure3 shows a comparison of the reconstruction
quality of both sensors. Geometry quality from Kinect
v2 data is inferior to that of Asus Xtion PRO. Therefore,
we captured about 90% of the scenes in our dataset using
Asus Xtion PRO. A small number of scenes are captured by
Kinect v2 for further analysis and comparison.

3.3. 3D Reconstruction

There are several techniques for 3D reconstruction from
RGB-D images. KinectFusion [19] and its moving volume
extension [33, 23, 20] can be applied to reconstructing a
scene in real time. However, such techniques do not glob-
ally optimize surface alignment. The camera pose tends
to drift over time due to error accumulation, which leads
to poor-quality reconstruction. In robotics, Kerl et al. [16]
proposed to use keyframes and an entropy metric to detect
loop closure and eliminate drift. Whelan et al. [34] pro-
posed to detect local loop closure by model-to-model regis-
tration, and global loop closure by place recognition using
fern encoding. These method runs in real time, but the re-
construction quality is inferior to of�ine methods.

A notable of�ine approach for reconstruction is to split
an RGB-D sequence into segments, each containing a small



Kerl et al. [16] Whelan et al. [34] Choi et al. [6]
Figure 4. Comparison of state-of-the-art reconstruction methods.
The method by Choi et al. [6] produces the most visually pleasing
geometry.

number of frames. A standard RGB-D fusion approach can
be applied on each segment to obtain a geometric fragment.
The 3D reconstruction problem becomes how to align the
fragments globally. Choi et al. [6] proposed to align the
pairwise fragments and then perform an optimization based
on switchable constraints to prune false alignments. Zhou
and Koltun [46] proposed to deform the fragments using
control lattices for nonrigid alignment. In a subsequent
work [45], they proposed to represent nonrigid deformation
by a camera calibration function that can be optimized much
faster. These approaches might require a few hours to com-
plete reconstruction but can produce highly accurate surface
alignment.

Recently, Fioraio et al. [8] proposed an online recon-
struction system that can reduce the running time to the or-
der of minutes but still achieve good geometry quality. Xiao
et al. [36] proposed to employ user interaction for segmen-
tation and provide constraints for 3D reconstruction. How-
ever, their bundle adjustment with object bounding box con-
straints may produce inaccurate surface alignment.

Figure 4 shows a few typical scenes in our dataset re-
constructed by the method by Kerl et al. [16], Whelan et
al. [34], and Choi et al. [6]. As can be seen, the method by
Choi et al. produces the most accurate surface alignment,
leading to the most visually pleasing geometry. Therefore,
we choose this method for reconstruction of our dataset.

The implementation details are as follows. The volume
size is set to four meters, and the fragments are registered by
rigid alignment using a Gauss-Newton optimization. Only
depth values that are less than2:5 meters are considered for
reconstruction. In post processing, all unreferenced vertices
from the output mesh are removed. In addition, to allevi-
ate noise, connected components whose diameter is smaller
than10 cm are deleted. Finally, we modify the system to
support Kinect v2 sensor. This makes it possible to recon-
struct and annotate data from both Asus Xtion and Kinect
v2 sensors using the same pipeline.

In our reconstruction, we use a simple camera model of

Figure 5. Running time breakdown of the approach by Choi et
al. [6] applied on some of our scenes. The Copyroom scene is
courtesy of Zhou et al. [44].

which the focal length is calibrated using a checkerboard;
the principal points are set to the center of the image. This
model yields a relatively low depth reprojection error and is
convenient to use with existing graphics API like OpenGL.
Experiments with more complex calibration are available in
the supplementary document.

Figure5 reports the performance of the method by Choi
et al. [6] on some of our scenes. We use the time needed
to reconstruct the Copyroom scene captured by Zhou et
al. [44] as the baseline for comparison. As can be seen,
the most time consuming stage is the RGBD SLAM and
pairwise alignment. The time complexity of the pairwise
alignment is almost quadratic to the number of input frames,
which becomes a performance bottleneck for long input se-
quences.

3.4. Texturing

After reconstruction, the scene meshes can be textured
using color images. We implement a simple texturing ap-
proach as a baseline. To texture, we assign color to each
mesh vertex. This is done by reprojecting all mesh vertices
to the camera image space and recording the color distribu-
tion for each vertex. To remove noise, the median value of
the color distribution is assigned as the vertex color.

Since the triangles in the mesh could be very small, sev-
eral nearby vertices could fall onto a single pixel. In such
cases, we should regard all such vertices as unoccluded and
color them all. To do so, visibility test is performed by a soft
depth test,i.e., z-buffering with a small threshold to accept
vertices that have very similar depth values on a pixel.

4. Annotation

Our reconstructed scenes are fully segmented and anno-
tated. Our annotation is based on an automatic two-level
segmentation, �ne and coarse, followed by user interac-
tion to �ne tune the segmentation and annotation. In au-
tomatic segmentation, �ne segments are obtained by ap-
plying the graph-based segmentation algorithm of Felzen-
szwalb et al. [7] to the mesh vertices. Coarse segments are
then determined by merging the �ne segments by optimiz-
ing a Markov random �eld. From the initial �ne and coarse



(a) Merge

(b) Extract

(c) Split
Figure 6. Segmentation re�nement. The leftmost and rightmost
images illustrate the segmentation before and after applying the
operation, respectively.Mergeandsplit work on the coarse seg-
ments, whileextractcombines multiple �ne segments into a coarse
segment,e.g. in (b), the chair is extracted from the �oor.

segmentation, we then employ user strokes to re�ne the seg-
ments to �t scene semantics. User can switch between the
coarse and �ne segmentation display and perform three op-
erations: merge, extract, and split, to create desired seg-
ments. Figure6 demonstrates these operations. We found
that two-level segmentation combined with user strokes are
robust enough to segment our scenes. After segmentation,
user tags the objects with text labels. The annotation in
3D is then projected onto 2D frames, resulting in dense la-
belling in both 3D and 2D. More technical details of our
annotation tool could be found in the technical report [32].

To facilitate scene understanding, we enrich our dataset
with per-object annotation as follows:

� Axis-aligned Bounding Box (AABB). We provide axis-
aligned bounding box for each segmented object. The
�oor plane is segmented and its normal is estimated.
The scene geometry is rotated such that the �oor aligns
with thexz-plane.

� Oriented Bounding Box (OBB). For each object, the
eigenvectors of its vertices are used to de�ne an ori-
ented bounding box which tightly encloses the object.

� Object Pose. Each object could be rotated so that its
front direction matches the Z-axis. This transforma-
tion is particularly useful when the front direction of
an object is needed,e.g., furniture arrangement.

� Object Images. For each object, we extract color and
depth images in which the object could be observed.
This attribute is useful for training and testing object
recognition algorithms. It also allows the creation of
object datasets [31].

4.1. Annotation Transfer

While creating a scene dataset that involves geometry
reconstruction and interactive annotation, sometimes the
scene geometry needs to be updated after annotation. This
situation arises when a scene needs to be recaptured or re-
constructed using a new technique or new calibration pa-
rameters. These changes result in slightly different geome-
try. In such cases, it would be preferable to transfer existing
annotations to the new scene. In this section, we describe a
technique for automatic annotation transfer.

We assume that the source and target scenes share the
same set of RGB-D images. This allows us to transfer the
annotation by using reprojection. Our approach is as fol-
lows. First, we assign the reliable annotations to vertices.
As a vertex could be seen in multiple views, we keep track
of a set of candidate annotations of the vertex by projecting
the vertex to 2D and collect the annotations of the corre-
sponding pixels. The annotation that dominates more than
90%of the set is marked reliable and assigned to the vertex.

This step usually transfers a large amount of annotations
from the source mesh to the target mesh. However, due to
error in the reconstruction, some vertices may not have re-
liable annotations. This problem often occurs near object
boundaries, highly occluded regions, and areas where the
camera poses are not tracked accurately. We handle this
problem by propagating reliable annotations to vertices that
are not annotated in the previous step. The propagation is
done by a nearest neighbor search. Speci�cally, we treat
the vertices with reliable annotations as seeds. All seeds are
added to a 6-dimensional kd-tree. Each leaf node contains
the position and normal vector of its seed. For each vertex
without an annotation, we determine its nearest seed. The
annotation of the seed is then assigned to the vertex. The
nearest neighbor search considers both the positions and
normals of the vertices. We usekp � p i k + � (1 � n> n i ) to
measure the distance between a query point(p; n) to a tree
node(p i ; n i ), wherep andn denote the position and nor-
mal vector respectively. The parameter� is chosen based
on scene scale. In our experiments, we set� = 100.

Figure 7 shows an example of annotation transfer. As
can be seen, this approach can effectively transfer most of
the annotations from the source scene to the target scene. In
our implementation, the entire transfer process takes about
two minutes to complete. After propagation, noisy or mis-
labeled regions could be re�ned by user interaction.

5. Proof-of-Concept Applications

The annotated scene meshes and the extracted statistics
of our dataset can serve as useful inputs for multiple appli-
cations. In this section, we demonstrate how they can be
used for benchmarking shape completion algorithms, scene
relighting by applying intrinsic decomposition, scene syn-



(a) (b) (c)
Figure 7. Annotation transfer example. (a) Source mesh with annotations. (b) Target mesh with annotations transferred from the source
mesh. Note the subtle differences in geometry. Black regions correspond to unreliable annotation transfer. (c) Target mesh after propagating
annotations using kd-tree search. Please refer to supplementary document for more scenes.

Input PolyMender [14] Poisson [15]
Figure 8. Visual comparison of shape completion at scene level. Both methods can only complete small holes. Poisson reconstruction has
less cracks and holes in general. Please refer to supplementary document for enlarged images and more scenes.

thesis, and novel view synthesis. We run existing algorithms
with our scenes and provide insights based on the results.

5.1. Benchmarking Shape Completion Algorithms

The surface reconstructed from the depth-only pipeline
may contain holes at locations where depth is not avail-
able or consistent. Shape completion is an important post-
processing technique for �lling holes and improving geom-
etry quality. We describe how our dataset can be used to
benchmark data-driven techniques on shape completion.

We �rst study how the objects could be repaired by
low-level geometry processing techniques. Figure8 shows
a visual comparison of shape completion using Poly-
Mender [14] and screened Poisson surface reconstruc-
tion [15], two popular techniques for reconstructing and
repairing polygons as suggested by Attene et al. [1]. In
particular, for each scene, annotated objects are extracted.
Completion is performed on these objects and the resulting
objects are added back to the scene. We experimented with
completion on the entire mesh but found that it gives worse
results than completion on individual objects.

As can been seen, PolyMender works quite well in �lling
backfaces and small holes. Screened Poisson reconstruc-
tion ignores the existing surfaces and solves for a new sur-
face that best �t the input oriented point set. The results
have extended surfaces which could be trimmed. However,
trimming might cause holes to reappear. In general, these
methods are not effective for missing object parts such as
chair legs or big holes. More sophisticated approaches are
required to utilize object semantics for shape completion.

A recent technique for shape completion that considers
object similarity from a database is 3D ShapeNets [35].

This method fuses together CAD models from its database
to create a complete object such that it is structurally sim-
ilar to an input scan. Nguyen et al. [31] combine Markov
random �eld with 3D ShapeNets to �nd an optimal object
that is consistent to input color images.

We benchmark the performances of these techniques
since their implementations are publicly available. It is re-
quired that the objects are converted to volume representa-
tion and downsampled to30� 30� 30. This volume resolu-
tion is low because their system is designed towards scene
understanding, where such resolution is suf�cient.

Following the idea by Nguyen et al. [31], we treat the
objects as ground truth, and add random holes to the geom-
etry of the objects. The modi�ed objects are completed and
compared to the ground truth. We use incompleteness and
inaccuracy to measure the performance of the algorithms.
Figure9 reports the benchmark results. We also include the
results for PolyMender and screened Poisson reconstruction
evaluated at high-resolution volume at512� 512� 512.

Recently, Rock et al. [22] proposed to complete an object
by retrieving a similar depth map from a dataset, and then
�nd its corresponding 3D model and deforming the model
to �t the input scan. Sung et al. [30] used an object-part
representation to achieve more robust completion. The dis-
tributions of object parts are learned from a CAD model
dataset. It would be interesting to apply these techniques to
our dataset for more benchmark results.

5.2. Scene Relighting

Novel lighting could be generated for the scenes in our
dataset. To create relightable scenes, we use intrinsic de-
composition to obtain the re�ectance map of the mesh. Un-



(a) (b)
Figure 9. Benchmark of shape completion algorithms for objects.
The methods in (a) and (b) use a30� 30� 30and512� 512� 512
volume representation, respectively.

fortunately, the state-of-the-art methods are designed for
images, and while theoretically the extension to mesh sur-
faces is possible, there is no such available implementation
yet. Therefore, we opt to implement a simple intrinsic de-
composition technique to demonstrate this application.

We apply the Retinex method for mesh vertices which
is one of the simplest but effective decomposition algo-
rithm [3]. The variant of the Retinex algorithms that we
use is described as follows. Given the textureI , the shading
componentS can be optimized by minimizing:

E(S) =
X

i

X

j 2 N ( i )

(Si � Sj )2+ ! ij (( I i � I j ) � (Si � Sj ))2 ;

(1)
wherei; j refer to vertex indices,N (�) the neighbor query
operator.

The weight! ij is computed based on the chromaticity
difference between two neighbor vertices. It is set to a
large value if the chromaticity values are very similar, and
thus penalizes any local re�ectance changes. The weight
therefore works as a classi�er that distributes edges into re-
�ectance and shading components.

This cost function is quadratic. Zhao et al. [42] showed
that the shadingS is the solution of the linear systemAS =
b, whereA is a positive de�nite matrix,A ii =

P
j (1 + ! ij )

andA ij = � (1 + ! ij ), andbi =
P

j ! ij (I i � I j ), where
j 2 N (i ).

Figure10 shows the results of our intrinsic decomposi-
tion approach. We implemented our approach in C++, and
it takes less than10 seconds to process a mesh with two
million vertices on a laptop equipped with an Intel Core i7
CPU and 16 GB of RAM. In our examples, the relighting
result shows that the Retinex method works well and the
re�ectance is qualitatively good.

Since there is no publicly available implementation of
intrinsic decomposition algorithms on mesh, we can only
evaluate state-of-the-art methods with a subset of RGB-D
images with complex materials, illumination, and occlusion
from our dataset. Figure11 visually compares the results

Input Re�ectance Shading Relighting
Figure 10. Intrinsic decomposition using the Retinex method ap-
plied on the mesh texture and the relighting results.

Input Re�ectance Shading Re�ectance Shading

Chen and Koltun [4] Barron and Malik [2]
Figure 11. Visual comparison of the state-of-the-art intrinsic de-
composition algorithms on RGB-D images. Qualitatively, the re-
�ectance by Chen and Koltun [4] and the shading by Barron and
Malik [2] closely resembles the re�ectance and shading observed
in the input images.

produced by the state-of-the-art methods.
In our experiments, the method by Chen and Koltun [4]

takes about10 to 20 minutes per frame, while the method
by Barron and Malik [2] takes from1 to 2 hours per frame
including preprocessing. Recently, Hachama et al. [12] pro-
posed a technique to perform intrinsic decomposition for
multiple RGD-D frames. It is interesting to apply their
method to our data once their system is available.

5.3. Scene Synthesis by Extracted Statistics

Some useful scene statistics could be extracted from
our datasets for novel applications such as scene synthesis
and furniture arrangement. For example, object occurrence
and co-occurrence probabilities can be extracted, which are
commonly used for indoor scene synthesis [10, 39, 40]. In
the previous scene synthesis approaches, object distribu-
tion statistics are extracted from synthetic scenes created
by CAD modeling software. These synthetic scenes are not
only tedious to create but also unrealistic compared to real-
world scenes. Scene synthesis approaches can easily make
use of the realistic object distribution statistics extracted
from the scenes in our dataset.

To illustrate, we show the object co-occurrence matrix of



(a)

(b)

(c)
Figure 12. (a) Object co-occurrence of the22most common object
classes in our dataset. (b) Object placement probabilities of desks
(green) and chairs (red) computed from our scenes. Darker colors
correspond to higher probability. The horizontal and vertical axis
correspond to the X-axis and Z-axis in the world space. (c) A
synthesized scene based on the statistics.

the scenes in Figure12(a). From this matrix, common pair-
wise or group relationships between objects can be detected,
which is calledstructural groupsby Xu et al. [38]. We
also computeobject placement probabilitiesused by Chen
et al. [5] for scene synthesis, as shown in Figure12(b). We
�rst transform our scenes into a common coordinate system,
where the y-axis points upwards, and the x-axis and z-axis
are aligned to walls (if any). Then the bounding box of the
entire scene is divided into a10� 10grid before computing
the probabilities. We used20scenes in total to compute the
statistics. Note that only scenes of the same category are
used to compute the statistics.

Figure12(c) shows a synthesized workplace scene based
on the extracted statistics. The dominant objects in the
scene includes desks, chairs, monitors and keyboards,
which match the object co-occurrence statistics. The proba-
bility maps in Figure12(b) are used to arrange the desks and
chairs. As the object placement probability cannot avoid
object overlap, we verify object bounding box intersections
to discard overlap object placements.

5.4. Novel View Synthesis

Our 3D scene dataset can also be used for 2D applica-
tions. For example, it is possible to synthesize new views
that are hard to capture in the real world. Figure13 shows
two examples. In the bedroom scene, images can be ren-
dered with a virtual camera looking from the ceiling. In
the kitchen scene, images with a wide �eld of view can be
rendered.

The color and depth images synthesized at novel view-
points can potentially be used to boost scene recognition ca-
pability, to recognize scene images taken from these view-
points. Quattoni and Torralba [21] proposed a method to
recognize indoor scenes from color images. Zhou et al. [43]
proposed the Places dataset and a deep learning technique
to extract features of both indoor and outdoor scenes. The

Original views Novel views
Figure 13. Novel views generated from a bedroom scene and a
kitchen scene. Empty region which has no mesh surface is in-
painted. For the kitchen at the lower right, the white fridge is re-
moved from the scene to render a non-occluded front view of the
kitchen storage and the sink.

recognition is only trained with photographs from the Inter-
net. Our dataset could be used to enrich the training data for
these methods.

6. Conclusion

This paper presents a new dataset of annotated scene
meshes. Coupled with this dataset is a rich set of features
that aim to facilitate the study of several practical applica-
tions such as benchmarking shape completion algorithms,
scene relighting, scene synthesis and novel view synthesis.

We aim to expand this dataset by releasing our tools
to the community. Our scenes could also be used for ap-
plications such as relocalization [26]. The idea of sparse
re�ectance [25] could also be exploited to improve intrin-
sic decomposition. We are also interested in extending our
Retinex implementation to the model proposed by Chen and
Koltun [4] as both leverage least squares optimization.
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