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Datasets and Applications

Creating Annotated Scene Meshes for Training and Testing Robot Systems
 

 

Hi everyone, thank you for coming this presentation! 
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System overview3D reconstruction

Automatic segmentation

User interaction

Fine-grained annotation
• 3D and 2D refinement
• Object annotation
• Object search

Geometry Color

RGBD

Graphcut MRF

3D segmentation

2D segmentation
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We have now discussed most important components of the pipeline. It is time to review the 
stages, and discuss some ideas about managing this pipeline.  
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Building an Effective Pipeline
• Define input and output
• Define components to process the input and generate 

output
• Determine the state-of-the-art techniques for each 

component
• The selected techniques should balance between quality, 

speed, and scalability. 
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In general, the more we manage well the components, the more stable the pipeline is.  
 
Know your team and manpower. Are you going to use crowdsourcing?  
 
Estimate time to annotate a sample. Does it sound reasonable? 
 
Scalability: how many scenes are we going to annotate? Set a goal as it determines how the 
annotation is done. If it is done by human, we have to source manpower, i.e., your labmates, 
students, or crowdsourcing.  
 
Deploying the annotation tool.  
Our suggestion is: keep your annotation tool as straightforward as possible.  
First, the annotation tool is not the final output we would like to achieve. Spending too 
much time on it will delay other stages of the project.  
Second, annotation tool might be used by layman. If it is too complex, the time required to 
train the annotators will be longer.  
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Logistics for an Effective Pipeline
• Know your team and manpower.
• Estimate time to annotate 1 sample. 
• Dry run, feedback, improve the pipeline. 
• Annotate and validate.
• Scale to mass annotation.
• Re-annotate. 
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Building a pipeline is a small engineering project. A good pipeline facilitates the creation of a 
good dataset.  
 
Here we discuss some logistics that one might need to be aware of when building a pipeline.  
 
It could be rare that one can build a perfect pipeline and succeed with the annotation in one 
go. To avoid discovering bad annotations after a long annotation, try carefully the annotation 
tool with small samples, and ensure its robustness.  
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The Curse of Dataset Annotation

Courtesy of Xie et al., 
Semantic Instance Annotation of Street 

Scenes by 3D to 2D Label Transfer, 
CVPR 2016
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Acquiring and annotating data in 2D and 3D are laborious tasks. Tasks such as detection and 
segmentation often have less scenes/objects than classification.  
 
Earlier works such as LabelMe chooses to annotate in 2D. SUN3D is one of the first 3D scene 
dataset, but they choose to annotate in 2D with an interface similar to LabelMe.  
 
Xie’s work explored 3D annotation of stereo and laser data, and transfer the annotation into 
dense 2D image segmentation.  
SceneNN also follows the same principle, doing annotation in 3D and projecting to 2D only 
when necessary.  
 
The advantage is because 3D data is reconstructed from multiple views, we can annotate 3D 
once, and propagate all the annotation to all the views, which significantly improves the 
amount of annotated data in 2D.  
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Scene and Object Datasets since 2012

NYU

SUN RGB-DSUN3D

TUM

RGB-D v2

ObjectNet3D

2012 2013 2014 2015 2016

SceneNet

ShapeNet

PASCAL3D+

BigBIRD

COCOKITTI

IKEA YCBMV-RED

ICL-NUIM

CoRBS

Rutgers APC

ViDRILO

3D ShapeNets

DROT

GMU Kitchen

Redwood
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Since the introduction of consumer depth sensors like Kinect, we witness a bloom of scene 
and object datasets with depth information.  
 
We list datasets released since 2012 in the area of “scene” and “object” understanding (e.g., 
semantic segmentation, object pose estimation, depth restoration).   
Datasets for human activity recognition are not included.  
 
Among these datasets, datasets targeting 3D scene understanding are increasingly popular.  
Let us take a closer look at more relevant datasets for reconstructing and analysing complex 
indoor RGBD scenes.  
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Scene datasets
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RGBD datasets have been proved useful to several computer vision applications, such as 
semantic segmentation and object recognition. However, these applications are mainly 
designed to work in 2D.  
 
For scene reconstruction, scene understanding in 3D and other graphics application such as 
scene relighting, novel view synthesis, the scale of existing datasets are deemed not 
sufficient. For example, NYU and SUN-RGBD have up to 10,000 frames but lack 
reconstructed scenes and camera poses. TUM is designed for benchmarking 3D 
reconstruction, and lacks annotation. SUN3D is a large-scale dataset that could have been 
suitable for 3D applications, but their annotation tool relies on 2D annotation, and only 8 
scenes are annotated out of more than 200 scenes in the dataset.  
 
To address such problems, in 2016, we introduced SceneNN: A Scene Meshes Dataset with 
aNNotations.   
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SceneNN: A Scene Meshes Dataset with aNNotations

• 100+ scene meshes (offices, dorms, classrooms, bedrooms, kitchens)
• Captured from UMass Boston, SUTD

8

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, 
Minh-Khoi Tran, Lap-Fai Yu, Sai-Kit Yeung
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Our tool is the key driving force for us to build SceneNN, a scene mesh dataset with 
annotations.  
Here is the first scene meshes dataset with dense annotations.  
 
The scenes are captured from UMass Boston and the Singapore University of Technology and 
Design.  
 
They consist of offices, dorms, classrooms, pantries, etc. 
 
Each scene mesh is manually annotated with per-vertex semantic labels, and bounding 
boxes for each object. 
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SceneNN dataset
• 100+ RGBD indoor scenes
• Raw videos from 2,000 to more than 10,000 

frames
• Reconstructed triangle meshes in PLY format
• Per-frame camera poses
• Per-vertex and per-pixel labelling 
• Annotated bounding boxes, object poses
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http://www.scenenn.net

 

 

SceneNN dataset is packed with more than 100 scenes. Compared to existing dataset such as 
SUN3D and the SceneNet, our data is captured from the real-world indoor scenes and fully 
annotated.  
 
Each scene has thousands of frames. Each scene is reconstructed into a triangle mesh in PLY 
format. The camera pose for each frame is also included. The key difference between our 
dataset and previous work is that we provide per-vertex and per-pixel segmentation and 
annotation, together with bounding boxes and a tool to specify object poses.  
(Note: We do not really include object poses in the XML release even though our tool is able 
to provide object pose – front direction, so please avoid claiming annotating *all* object 
poses.)  
 
Our scenes span many categories including indoor workplace and household rooms like 
bedroom, living rooms and kitchen. Our dataset is available for download at the shown URL.  
 
In this talk, I would like to share how we built this dataset, including the engineering choices 
and techniques we use to perform annotation. We also highlight several potential 
applications that can be further explored from the available data.  
 
Now let me first talk about the overall process of making a scene in the dataset.  
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ScanNet

• 1500+ indoor scenes

• Per-vertex 
instance segmentation

• Crowdsourcing annotation:
massive scale vs. 
quality control.

• Voxel labelling

Dai et al., ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes, CVPR 2017 10

 

 

Crowdsourcing could be an option if one would like to annotate a large number of scenes. 
However, as with previous applications, using crowdsourcing for annotation is in fact 
challenging. One has to be very careful in deciding whether to sacrifice some quality for 
larger scale.  
 
ScanNet is a typical example of 3D dataset annotation done with crowdsourcing, released 
not long after SceneNN in early 2017.  
As far as we know, it is difficult to keep the annotation consistent. In ScanNet, for 
segmentation, there are some scenes where the annotation is very coarse, while some has 
very detailed annotation.  
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3D Dataset Annotation

30 60 minutes

# scenes

100

1500

SceneNN
30 mins

ScanNet
17.3 mins

annotation
quality
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Inspired by Xie et al., we plot the dataset size vs. annotation time for recent 3D scene 
datasets.  
 
Here is an interesting comparison: with similar scene complexity, SceneNN annotators spend 
more time than ScanNet. We explain this by the level of detail in the annotation. In 
SceneNN, we focus on segmenting objects carefully, together with annotating object poses. 
We also ensure consistency by performing additional iterations on the annotated scenes. For 
ScanNet, this is more challenging due to their crowdsourcing annotation.  
 
Currently, it is unknown that what should be the curve for 3D dataset annotation.  
Should it be like the red curve? Or the green line? 
 
At the moment, there seems to have only two samples. Perhaps we need more 3D scene 
datasets to conclude this open question.  
 
Also, beside evaluating the scalability, it is preferable to evaluate the annotation quality, e.g., 
by the accuracy metric of a particular task such as object classification or segmentation 
when using the datasets as training inputs.  
 
In the end, we would like to have sufficient data with sufficient quality for training.  
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ShapeNet

12,000 CAD models                    270 categories

https://www.shapenet.org
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Another notable dataset, but for CAD models is ShapeNet. Here we consider a smaller 
variant of ShapeNet, called ShapeNetSem, where the objects are carefully annotated 
including category and front and up direction. Here are some examples from the dataset: 
different types of chairs and tables.   
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SceneNN-CAD

Bounding box

Object pose

Position 

CAD 

models
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With SceneNN we also attempt to convert the acquired scenes to CAD models.  
 
Converting from semantic segmented mesh into CAD models require some additional 
information such as object position and object orientation. With machine learning, 
theoretically this task could be solved automatically by performing semantic segmentation 
on the mesh together with object pose estimation. Then, the object centroid and pose can 
be used to position a CAD model retrieved from a database. Small adjustments are applied 
to avoid the CAD models being collided to each other because the sizes of the CAD models 
might differ from those in the real scene.  
 
For example, we built a simple interactive tool to assist object pose annotation beside 
semantic segmentation, and match the objects with the models in the ShapeNet database. 
We consider object up (green axis) and front (blue axis) as in the bottom figure. As you can 
see, the image on the right is the CAD scene that closely matches the input in terms of 
object type, position and orientation.  
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Application: RGB-D to CAD retrieval
Query: RGB-D object 
• Color and depth images
• Triangle mesh

Target: CAD model 
• Triangle mesh

SceneNN ShapeNet

For each query, return a ranked list of retrieved CAD models 14

 

 

By utilizing an RGB-D and a CAD dataset, we investigate a cross-domain retrieval problem: 
matching a RGBD object to a CAD model.  
 
Query objects are RGB-D models, which are extracted from SceneNN, and target objects are 
CAD models, from ShapeNet.  
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Objects from SceneNN

15

 

 

To relate objects in both SceneNN and ShapeNet for object retrieval purpose, we built a 
customized user interactive tool that displays in 3D objects from both datasets. We allow 
user to navigate the datasets, edit and assign categories to each object pair.  
 
While there are plenty of objects in SceneNN and ShapeNet, only objects belonged to the 
common categories can be used for our retrieval problem.  
 
We asked three users to help annotate the objects. The first user handles SceneNN, the 
second ShapeNet, and the final user performs verification and check common categories.  
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Objects from SceneNN
20 categories
1667 objects from 
SceneNN
3308 objects from 
ShapeNet

SceneNN

ShapeNet
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Here are the resulting dataset statistics and object distribution.  
- 20 categories of common household items 
- 1667 RGBD objects 
- 3308 CAD models  
 
The object categorization task is experimented with machine learning techniques, including 
bag-of-words and recent deep learning techniques. More details in our SHREC’17 workshop 
paper.  
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Object Classification

More details in our SHREC’17 and SHREC’18 workshop paper. 17

 

 

We plot the precision for each category, which helps reveal any bad categorization in our 
data. As expected, furniture categories such as chair, desk, display have good performance. 
There is still some ambiguity left for machine and printer class, which accuracy of the best 
method is only about 50%.  
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Application: Containability Reasoning

18
Fill and Transfer: A Simple Physics-based Approach for Containability Reasoning, 
Lap-Fai Yu, Noah Duncan, Sai-Kit Yeung, ICCV 2015  

 

One important direction in robotics and computer vision is object affordance or functionality 
understanding. 
 
There are many different types of affordances that we may want to deduce, for example, 
supportability, stackability, containability and so forth. You may refer to the AfNet 2.0 for a 
list of common object affordances and their definitions. 
 
We hope that building an annotated scene mesh dataset would help us to develop new 
affordance reasoning approach too. For example, we can use the individual objects instances 
for testing affordance analysis algorithms. To do this, we would like to add affordance labels 
for different objects in the SceneNN dataset in future, which can be easily done. 
 
Concerning object affordance reasoning, we worked on containability analysis of different 
daily objects in ICCV 2015. 
 
Given different common objects in indoor scenes, our approach automatically deduces 
which objects are containers, and the direction of fill and transfer in using an object as a 
container, by doing intuitive physics reasoning. 
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Containability Reasoning
Which one is a container? How would you pour the water out?

Which one will you use to carry water? Can this tray hold liquid? 19

 

 

Our work is motivated by containers we encounter in our everyday life. 
 
Containability analysis can be tricky using a traditional object recognition approach. This is 
because different containers can have very different shapes, outlook, colors, materials. For 
example, the picture on the top-left shows different containers with a variety of shapes and 
materials. 
 
Also, in addition to recognizing a container, it’s also very important for robotics to deduce 
the other manipulation related properties. For example, how to fill up a container, and how 
to pour liquid out of a container. A robot also needs to decide which is an appropriate 
container for performing a certain task. For example, it should reason that a cup is better 
than a plate for carrying liquid, and that a tray with holes cannot be used for carrying liquid. 
 
We find that by performing a simple physics based simulation, we can answer many of these 
tricky questions, and hence it is a very useful approach for containability reasoning. 
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Containability Reasoning
• Physics-based simulation features for containability reasoning

• Can we use simple physics-based approaches to analyze 
affordances?

20

Containers Non-Containers

 

 

We propose a novel approach to use physics-based simulation features for containability 
reasoning. 
 
The idea was inspired by our work called “Zoomorphic Design” in Siggraph 2015. When we 
worked on that project, we needed an approach to distinguish the two objects on the left as 
containers, and the two objects on the right as non-containers, in order to automatically 
generate zoomorphic cups that still preserves the containability affordance. Our approach 
now provides a working solution. 
 
We believe simple physics based approach can be used to analyze affordance.  
 
We believe the ultimate goal is to let computers to interact with everyday objects 
seamlessly like humans do. 
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Containability Reasoning

21

fill transfer

 

 

There are two major manipulation operations we want to analysis, the direction for filling up 
a container, and a direction for transferring liquid from a container to another container. 
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Fill

Input

point cloud voxelized

flood-fill
filling-direction search

fill

Transfer

transfer

Fill and Transfer
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To deduce the filling direction, we run a fast physics based simulation to fill up a container 
from many different directions, and use the direction that corresponds to the maximum 
amount of liquid being filled up as the filling direction. We use a smoothing-based 
optimization to speed up the search for such a direction. Note that, if an object can barely 
be filled up in any direction, we deduce it as a non-container. 
 
To find the transfer direction, we assume that the object is filled up from its filling direction 
deduced before. Then we tilt the object slightly in different directions to pour its liquid out. 
The direction that which results in the least spillage while pouring out the liquid is deduced 
as the transfer direction. The spillage is defined as proportional to the length of the 
container’s edge that the liquid flowing out passes through. The longer that length, the more 
spillage is likely to happen. 
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Choosing Containers

23

volume = 90% volume = 50%

 

 

Using our physics simulation-based approach, we can easily deduce that both a cup and 
plate are a container, while a cup is a better container because it is more robust to 
perturbation. That is, if we tilt a cup by a small angle, most of its liquid is still being held, 
while for a plate, most of its liquid is poured out if we tilt it by a small angle. 
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User Annotation Comparison

Identifying container:
Error in best filling 

direction: ~16.64˚
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We apply our approach for analyzing many common objects in common indoor scenes. Our 
approach can identify most of the possible containers in our dataset. 
 
We also conducted user study to compare the filling and transfer direction deduced by our 
approach, with the filling and transfer directions decided by general users, which are quite 
close. 
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Real-world Examples

UW RGB-D Scene Dataset

Scanned by Structural Sensor

pitcher

non-container
25

 

 

In our experiments, we also tested our approach on small scenes scanned by a structural 
sensor,  and from the UW RGB-D scene dataset, and show that our approach can analyse 
containability in such scenes. 
 
With the availability of SceneNN, we can also test our algorithm with objects in many 
common scenes too. This is one of the reasons why we want to set up the SceneNN 
platform, to allow people to test their scene understanding algorithms really easily on many 
difference scenes. 
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Limitations

Small holes

Internal flow of liquid

Containability closure

26

 

 

Our containability analysis approach still suffers from limitations. For example, if the holes 
on an object are really small, it may not be able to detect the holes due to resolution 
problem, and regard that object as a liquid container. 
 
It also does not consider the internal flow of liquid, which may fool the simulation in 
deducing the transfer direction. 
 
It also does not consider containability closure; that is, for some objects which are sealed 
like a pack of milk, which is a container, our approach which is purely physics simulation 
based will consider it as a non-container.  
 
So there are many interesting research opportunities along the affordance understanding 
direction, and we hope the SceneNN annotated scene dataset will facilitate such research 
investigation. 
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Summary
• Creating large real world 3D datasets is challenging. 
• Acquisition and annotation are both time consuming.
• How to scale further, e.g., to tens of thousands scenes?
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