Pointwise Convolutional Neural Networks

 $(n \times 3)$

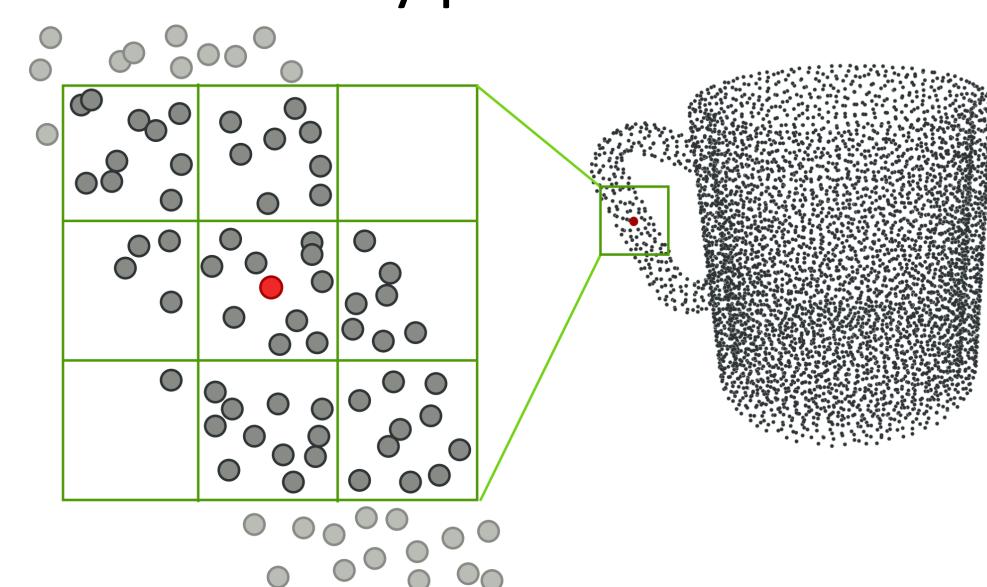
Point cloud

Pointwise convolution

Binh-Son Hua

The University of Tokyo

Minh-Khoi Tran


Sai-Kit Yeung

Fully connected

Singapore University of Technology and Design

Pointwise Convolution

Convolution at every point of the cloud

- On-the-fly uniform grid for nearest neighbour search
- Forward convolution

$$x_i^{\ell} = \sum_{k} w_k \frac{1}{|\Omega_i(k)|} \sum_{p_j \in \Omega_i(k)} x_j^{\ell-1},$$

Backward propagation

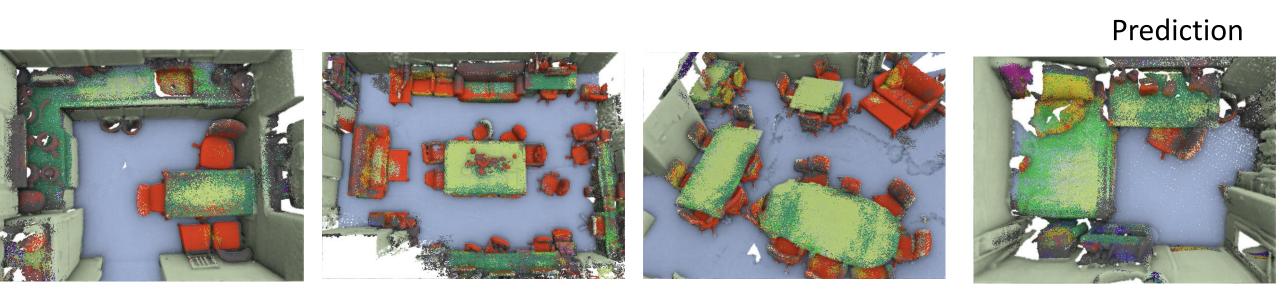
$$\frac{\partial L}{\partial x_j^{\ell-1}} = \sum_{i \in \Omega_j} \frac{\partial L}{\partial x_i^{\ell}} \frac{\partial x_i^{\ell}}{\partial x_j^{\ell-1}} \qquad \frac{\partial x_i^{\ell}}{\partial x_j^{\ell-1}} = \sum_k w_k \frac{1}{|\Omega_i(k)|} \sum_{p_j \in \Omega_i(k)} 1$$

$$\frac{\partial L}{\partial w_k} = \sum_{i} \frac{\partial L}{\partial x_i^{\ell}} \frac{\partial x_i^{\ell}}{\partial w_k} \qquad \frac{\partial x_i^{\ell}}{\partial w_k} = \frac{1}{|\Omega_i(k)|} \sum_{p_j \in \Omega_i(k)} x_j$$

À-trous convolution

ManD

- > Self-normalizing activation function (SeLU)
- > CUDA and multi-GPU implementation


Source code and data

pointwise.scenenn.net

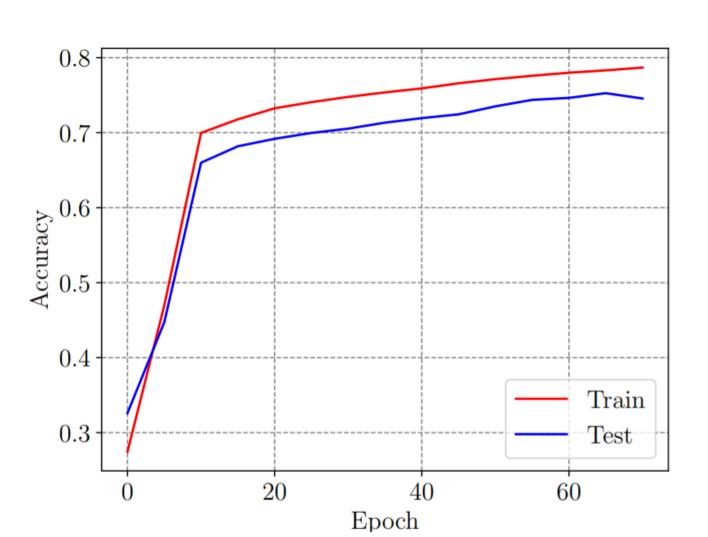
Semantic Segmentation: SceneNN

Concatenation

(concat)

Class	Ours	PointNet	Class	Ours	PointNet
wall	0.868	0.897	table	0.412	0.235
floor	0.864	0.891	counter	0.144	0.052
cabinet	0.214	0.090	desk	0.362	0.310
bed	0.513	0.457	pillow	0.175	0.067
chair	0.639	0.596	tv	0.178	0.114
sofa	0.298	0.167	box	0.141	0.163

Object Recognition


dropout 0.5

Semantic segmentation

√ 78.6 √ √ √ √ √ √ √ √ 82.5 √ √ 81.7 √ √ 81.9						
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Ø Ø	Base	Concat.	À-trous	SELU	Dropout	Accuracy
✓ ✓ 75.0 ✓ ✓ 82.5 ✓ ✓ 81.7 ✓ ✓ 81.9	$\overline{\hspace{1cm}}$					78.6
 ✓ ✓ ✓ ✓ ✓ ✓ Ø 82.5 81.7 ✓ ✓ Ø 	\checkmark	\checkmark				78.0
 ✓ ✓ ✓ ✓ 81.7 81.9 	\checkmark		\checkmark			75.0
√ √ 81.9	\checkmark	\checkmark	\checkmark			82.5
	\checkmark			\checkmark		81.7
((85.2	\checkmark	\checkmark		\checkmark		81.9
v v v 03.2	\checkmark	\checkmark		\checkmark	\checkmark	85.2
✓ ✓ ✓ 86.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	86.1

Convergence

ã 0.6 -

concat

- (a) Scene segmentation
- (b) Object recognition

Adapt neural network design

Future Works

Applications: denoising, upsampling, colorization.

